Ravi Rasik Patel

Mailing Address

1200 Galapago St. APT 1002 Denver, CO 80217 **Contact** Ph: (770) 402-6909 ravi.patel@ucdenver.edu

Education

2013	BS	Georgia Institute of Technology	Biomedical Engineering	
		GPA: 3.35/4.00		
2016	MS	University of Colorado-Denver	Mechanical Engineering	
2018	PhD	University of Colorado-Denver	Engineering and Applied Sciences	
	Dissertation:	Development of a Patient Specific Porous Poly(para-Phenylene) Spinal		
		Cage for Lumbar Interbody Fusion		
	Committee:	Committee: Christopher Yakacki, PhD; R. Dana Carpenter, PhD; Kai Yu, PhD;		
		Carl P. Frick, PhD; Nick Willett, PhD		

Software Skills

Finite element analysis using ABAQUS (5 years), image segmentation in ScanIP (5 years), 3D design in SolidWorks (8 years), scripting in MATLAB (9 years), data acquisition in LabVIEW (2 years)

	Professional Experience
2018-Present	Consulting Engineer, K1C, Denver, CO
	• Developed finite element model for analysis of compression a nickel-
	titanium based intramedullary nail for ankle fusion
2017-Present	NSF Intellectual Property Intern, Furman IP Law, Boulder, CO
	• Conducted prior art searches for attorney to determine product patentability
	• Drafted invention disclosures and patent claims strategically to maximize
	client IP portfolio options and create the broadest coverage of existing
	patents
2014-Present	Graduate Research Assistant, University of Colorado Denver
	 Developed Finite Element model for analysis of porous polymer spinal
	fusion cages using patient specific images and created a model for prediction
	of endplate properties from demographic and radiographic data
	 Analyzed mechanical properties of lumbar vertebrae and spinal
	instrumentation using electromechanical testing systems with custom test
	fixtures (Instron, MTS, Bose) according to ASTM F2267
2013-2014	<i>Research Scientist</i> , LumaMed, Inc., Norcross, GA
	 Performed power throughput analysis of a novel optical microscope for
	detection of cancer tumor margins
	 Developed LabVIEW program for image subtraction of cross polarized
	cameras

2010-2012	 <i>Research and Development Co-op</i>, Medshape, Inc. Atlanta, GA Developed and modeled various surgical implant and instrument designs for shoulder, foot/ankle, and knee orthopedic procedures within the quality
	system defined by ISO 13485.
	• Evaluated mechanical strength and integrity of orthopedic implants using
	electromechanical material testing systems (Instron, MTS, TA) for validation
	testing according to ASTM and ISO standards for each respective device.
2009-2010	Research Assistant, Georgia Institute of Technology, Atlanta, GA
	Department of Biomedical Engineering
2007-2008	Research Assistant, Georgia State University, Atlanta, GA
	Awards/Honors
2017	NSF INTERN Fellowship Program awardee (\$30,000)
2016	1 st Place, Mechanical Engineering Spring Symposium
	Given by University of Colorado Denver Mechanical Engineering Dept.
2015	3 rd Place, Mechanical Engineering Spring Symposium
	Given by University of Colorado Denver Mechanical Engineering Dept.
	Publications
2018	

3. **Patel, R. R.**; Noshchenko, A; Carpetner, R. D.; Baldini, T.; Frick, C. P.; Patel, V. V.; Yakacki, C. M. (2018) Evaluation and Prediction of Human Lumbar Vertebra Endplate Mechanical Properties Using Indentation and Computed Tomography. (In Preparation)

2017

 Ahn, H.*; Patel, R.R.*; Hoyt, A.; Lin, A.; Trostrick, B.; Guldberg, R.; Frick, C.P.; Carpenter, R.D.; Yakacki, C.M. (2017) Load Sharing and Mechanical Strength of Bone Ingrowth in Porous Poly(para-phenylene) scaffolds. *Acta Biomaterialia* (Accepted for publication) (*indicates equal contribution)

<u>2016</u>

 Collins, D. A., Yakacki, C. M., Lightbody, D., Patel, R. R., & Frick, C. P. (2016). Shapememory behavior of high-strength amorphous thermoplastic poly (paraphenylene). *Journal of Applied Polymer Science*, 133(3)

Presentations/Conference Proceedings

<u>2017</u>

- Patel, R.R.; Ahn, H.; Hoyt, A.; Lin, A.; Trostrick, B.; Guldberg, R.; Frick, C.P.; Carpenter, R.D.; Yakacki, C.M. (2017) Load Sharing and Mechanical Strength of Bone Ingrowth in Porous Poly(para-phenylene) scaffolds. IMRC
- 1. **Patel, R. R.**; Noshchenko, A; Carpetner, R. D.; Baldini, T.; Frick, C. P.; Patel, V. V.; Yakacki, C. M. (2017) Evaluation and Prediction of Human Lumbar Vertebra Endplate Mechanical Properties Using Indentation and Computed Tomography. ORS

Additional Information

- 2017-Present Teaching Assistant/Lecturer, 3D design and 3D Printing Class, University of Colorado Denver
- 2017 Attendee, Practicing Law Institute Patent Bar Review, Atlanta, GA